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AE=AE, (+AE, , (6.4)
where

AEy.s, = —(Z/Tr)fE"‘ 6(E)dE (6.5)
and '

AE,, =N"Z €. (6.6)

1=1

The contribution from the phase shift has an extra
factor of 2, as compared to result (2. 21), to allow
for the two possible directions of electron spin.
The factor N in bound-state contribution has a value
of 1 or 2 depending upon whether it is occupied by
one or two electrons. However, since this contri-
bution is negligibly small, we can ignore this dif-
ference.

Studies were made for different potential strengths
by just replacing V by AV, Table IIl shows the re-
sults for four values of A,

From the study of the single vacancy,® * it was
concluded that a value of A=1. 04 is required. The
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change in the one-electron energy for this case is
now found to be —0.67 Ry. The corresponding value
for the single vacancy? is 1. 67 Ry. Thus we get a
net change for a vacancy-interstitial formation of
1.00 Ry or 13.6 eV.

To evaluate the actual formation energy of the
vacancy-interstitial pair, one has still to consider
the change in the energy associated with the Cou-
lomb interaction of electrons in the neighborhood
of the vacancy and the interstitial and the lattice
distortion in the two areas.

We searched for a possible bound state in the gap
below the conduction bands. None was found. This
can possibly explain the lack of direct evidence of
the presence of an interstitial in silicon.

Further study on other possible interstitial lo-
cations is in progress.
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Experimental Determination of the Electron Temperature from
Burstein-Shift Experiments in Gallium Antimonide

H. Heinrich* and W. Jantsch
Institut fitv Angewandte Physik dev Univevsitat Wien
und Ludwig Boltzmann Institut fi'r Festkovpevphysik, Vienna, Austria
(Received 10 March 1971)

The shift of the Fermi energy because of an applied electric field is determined from
Burstein-shift measurements in GaSb at 77 K up to field strengths of 150 V/cm. By com-
parison with results of the Burstein shift at lattice temperatures up to 105 K without an elec-
tric field, the electron temperature is obtained as a function of the electric field. Calcula-
tions of the electron temperature, based on a two-band model, are compared with the experi-
mental results.

I. INTRODUCTION higher than the lattice temperature. Methods of an
experimental determination of T, from Shubnikov-de
Haas measurements ' and Raman scattering? due to
hot electrons have been reported. However,
Shubnikov-de Haas experiments are restricted to

low temperatures and high magnetic fields, and

Hot-electron experiments in semiconductors with
large electron concentrations are often interpreted
by assuming a Maxwellian or a Fermi distribution
function with an electron temperature 7,, which is
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for the evaluation of the Raman effect an accurate
knowledge of the band structure of the investigated
material is necessary. In this paper we want to
report a new method for the determination of 7,
from Burstein-shift (BS) experiments.

In degenerate semiconductors the absorption edge
is shifted to higher photon energies by an amount®

€= (L+m,/m;) (€ p— 4kT,) , @)

where m, and m, are the effective masses of elec-
trons and holes, respectively, €is the Fermi en-
ergy, and T, the electron temperature.

Recently Shur? has pointed out that the BS may
be influenced by an external electric field. For the
fields considered here, the influence on the absorp-

“tion edge may be expected to be several orders of
magnitude greater than the Franz-Keldysh effect. %8
The electric field heats the electron gas and conse-
quently reduces the Fermi energy and hence the BS.
Transmitted light with a wavelength at the fundamen-
tal absorption edge therefore is modulated by an
electric field. This light modulation is very fast;
it occurs within the energy relaxation time which
for GaSb at 77 K is approximately 2X107!! sec.” As
will be shown, the modulation is proportional to the
field-induced decrease of €z as long as €, >4kT,
[Eq. (1)]. For higher field strengths, when €5 in
Eq. (1) becomes negative, the BS vanishes and the
modulation saturates. Therefore the electron tem-
perature may be determined for T,<€z/4k as a
function of the applied electric field, if the depen-
dence of the Fermi energy on the electron temper-
ature, €p(T,), is known. Since the shift in Fermi
energy resulting from a variation of either the elec-
tron temperature or the lattice temperature is the
same, the Fermi energy may be determined from
measurements of the BS as a function of lattice
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FIG. 1. Spectral dependence of the signal of a Ge

detector obtained from transmission measurements on
n-GaSh with an electron concentration of 3.5%101"/e¢m3
(curve A), and 6. 8%10%%/cm? (curve B) at 77 K. The bar
at 0. 8 eV indicates the resolution of the monochromator.
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Results for the Fermi energy calculated as a

function of the temperature for GaSb with an electron
concentration of 3.5%10!"/cm3 (curve A) and 6. 8x10%/cm?

(curve B).

temperature.

The straight line gives the energy 4k T,.

II. EXPERIMENTAL

Samples were prepared from Te-doped GaSb. Ty-
pical sample dimensions were 2X2x0.08 mm®.
Carrier concentration and mobilities were deter-
mined from conductivity and Hall measurements
at 77 K, where the population of the L, minima,
lying 0. 09 eV above the I';y minimum, still is neg-

TABLE I

Constants used in the numerical cal-

culation.

n=3.5%101"/cm3

Ho(77 K) =7000
em?/V sec

n=6.8x101/cm?

Ho(77 K) =6900
cm?/Vsec

(bo/ By 77 =9. 0
my=0,05m,

m“=0. 143me
K=8.6

a=56.5
A(77 K)=0.09 eV

T¢=1.6%x10"!! gec

Carrier concentration of material
of curve A?

Mobility in I'y of material of
curve A*

Carrier concentration of material
of curve B?

Mobility in Ty of material of
curve B*

Mobility ratio (Ref. 10)
Effective mass in T'y (Ref, 11)

Transverse effective mass in L
(Ref. 10)

Anisotropy coefficient in L
(Ref. 11)

Effective density of states ratio

Energy separation between I'y and
L, (Ref. 10)

Energy relaxation time (Ref. 7)

20Obtained from Hall and conductivity measurements.
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FIG. 3. Detector signals obtained from transmission
measurements on degenerate (curve A) and nondegenerate
(curve B) material as a function of the lattice tempera-
ture.

ligible. The results are given in Table I.

In Fig. 1 the detector signal obtained from trans-
mission measurements is plotted as a function of
the photon energy. The curves marked A and B
were measured at 77 K with the help of a Ge-photo-
voltaic detector, curve A with zn-type GaSb of an
electron density of 3. 5X10'"/cm?, curve B with
6.8x10'®/cm®. Because of the drop of the spec-
tral sensitivity of the Ge detector below 0.75 eV,
curves A and B show the same dispersion relation
for the lower part of the spectrum.

A calculation of the Fermi energy, based on a
two-band model as described in Ref. 8, exhibits
that the material of curve B is not degenerate at
77 K. In this model carrier transfer from the low-
est I'; conduction-band minimum to the L; minima

is taken into account. Assuming a Fermi distribu-
tion function, the carrier concentrations #qy and n,
in the I'y and L, valleys, respectively, are given
by

"29mo kT, \ 32 €
no=4m <“‘;l‘%—£‘> Fus (k'{-) , (2)
e
2m kT, \ 32 €p— A
n1=4ﬂ(—r—;: ) 4K“2Fua( e ) ®)
e

where mg is the effective mass in I'y, K=m,,/m;
is the anisotropy coefficient for the L; minima, A
is the energetic separation between these valleys,
and F,,, are Fermi integrals. Assuming the total
carrier concentration n=n4y+7, to be constant,

the Fermi energy is obtained by a numerical solu-
tion of Eqs. (2) and (3) as a function of the elec-
tron temperature. The constants used in the cal-
culation are given in Table I and results for the
total carrier concentrations of the investigated
materials of curves A and B are shown in Fig. 2.
According to Eq. (1) the difference of the Fermi
energy and the energy 42T, (straight line in Fig. 2)
is proportional to the BS. For the material of
curve A this difference, and hence the BS, vanishes
at 99 K. At 77 K for € - 4kT, a value of 8.5 meV
is obtained. The Fermi energy of the material of
curve B is less than 42T even at 77 K and no BS
occurs. Therefore the energetic separation of the
curves A and B in Fig. 1, which is approximately
11 meV, corresponds to the BS of the higher-doped
material.

For the investigation of the transmission depend-
ing on electric field and lattice temperature, poly-
chromatic light has been used. When the band edge
is shifted by an amount of Ae due to the change in
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FIG. 4. (a) Temperature dependence of the difference in detector signal between sample of curves A and B normalized
to 77K (full line). Dashed line represents the calculated value of €g(T)/€g(77). () Results for 1 — AU/AU; obtained from
electric-field-dependent measurements (full and open circles were measured on 2 different samples).
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FIG. 5. Experimental (full and open circles) and cal-
culated results (solid line) of the electron temperature
as a function of the electric field strength.

BS, the transmittivity 7, .(€) at a photon energy €
equals T(e + Ae), T(€) being the transmittivity with-
out shift. The corresponding change AU in detec-
tor signal U may be described by

AU= [° [T(e+ a€)- T(e)]S(e) de , )

where S(€) is the spectral sensitivity of the detector.
The integrand in Eq. (4) can be expanded into a
Taylor series, and terms of second and higher or-
ders can be neglected, if

1 8S Ae

Sve 2| <t ()

The value of Eq. (5) was determined to be less than
0.1 for the highest A€ under consideration. In this
case the detector signal is proportional to Ae, from
which the variation of € z— 42T is obtained.

In order to determine the BS as a function of the
lattice temperature, the variation of the energy
gap ° with temperature had to be taken into account.
In Fig. 3 the detector signals measured on the de-
generate curve (A) and nondegenerate curve (B)
samples are plotted as a function of the lattice
temperature. Curve B represents the dependence
of the energy gap on the lattice temperature. Above
100 K, when the BS of the material curve (A) van-
ishes, both curves depend in the same way on the
temperature. The BS is obtained from the differ-
ence of the detector signals (U,~- Uy). Normalized
values of the BS as a function of the lattice temper-
ature are given in Fig, 4(a) (solid curve). The
dashed curve in Fig. 4(a) is the calculated BS (see
Fig. 2), normalized also to 77 K.

For the determination of the BS as a function of
the electric field, voltage pulses of 1-usec dura-
tion with a repetition rate of only 2 Hz have been
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applied to the sample so that Joule heating is not
significant. To avoid injections, bridge-shaped
samples with large contact areas have been used.
Results for (1 - AU/AU,), which is proportional to
€5, are plotted in Fig. 4(b) as a function of the
electric field strength. AU, is the saturation val-
ue of the detector signal for high electric fields
when the BS vanishes. Now the electron tempera-
ture as a function of the electric field strength is
determined by comparison of Figs. 4(a) and 4(b),
as indicated, and results are plotted in Fig. 5.

III. DISCUSSION

We have performed calculations of the electron
temperature, using the model given in Ref. 8, which
has been modified by taking into account the degen-
eracy of the electron gas. In this model a Fermi
distribution function in the I'y and L; valleys with
common electron temperature and energy-indepen-
dent mobilities uy and pu, in the I'; and L, minima,
respectively, were assumed. The field strength E
and the electron temperature are related by an en-
ergy balance equation:

og2 Porto(Te)+ pymy (Te) _(e(T)) = (e(Ty))

n Te

®)

7. stands for the energy relaxation time and

3/2
(T )= 2T e (2ol les) )

€ €Ep=— A n
X[F”z(kaL >‘°‘F*"2<kFT, L )]+ e O

« is the ratio of the density of states in the L, val-
leys to the density of states in the I'; minimum, and
F;,, are Fermi integrals. Inserting Eq. (7) and
no(T,) and #,(T,), which were calculated above from
Egs. (2) and (3), in Eq. (6), the field strength is
obtained as a function of T,. The constants used

in the calculation!®! are given in Table I. For the
energy relaxation time a value of 1.6x10™ sec
was taken, " which can be justified to be nearly en-
ergy independent up to field strengths of 150 V/cm
(“warm electrons”). Results of this calculation
are also given in Fig. 5 (solid line).

From the reported results we conclude that mea-
surements of the BS provide a useful tool for the
determination of electron temperatures in degener-
ate semiconductors.
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Electronic Properties of an Amorphous Solid.
I.A Simple Tight-Binding Theory

D. Weaire and M. F. Thorpe
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(Received 25 May 1971)

Using a simple Hamiltonian of the tight-binding type, rigorous bounds are derived for the
density of states of a tetrahedrally bonded solid. These include inner bounds which define a
band gap between occupied and unoccupied states. The derivation uses only the assumed per-
fect coordination of nearest neighbors, and so it holds for all tetrahedrally bonded crystal
structures and random networks of the kind proposed for amorphous Si and Ge. Various other
results are obtained for the fractional s- and p-like character of wave functions, the attain-
ment of bounds, and other features of the density of states. A band-structure calculation for
the diamond cubic structure serves as a test case.

I. INTRODUCTION

Two broad classes of disordered systems are
encountered in solid-state theory (see Fig. 1). In
the case of what we shall call quantitative disorder,
one defines a periodic array of potentials which are
not identical. They may, for instance, be of two
types, randomly distributed, in which case the the-
oretical model would be appropriate to a disordered
binary alloy. On the other hand, one may define
an array of potentials which are identical but not
periodically positioned. One might call this po-
sitional disorder. Such a model would be appro-
priate for, say, a liquid metal.

If a positionally disordered system has the same
coordination of nearest neighbors everywhere and
we describe it with a Hamiltonian which involves
only nearest-neighbor coordination, we have the
special case of topological disorder. The distinc-
tion between this case and that of quantitative dis-
order is somewhat clearer. The matrix elements
which specify the Hamiltonian are the same every-
where throughout the structure. It is the connec-
tivity of the structure which is disordered. Sucha
topologically disordered Hamiltonian would seem
to be an appropriate starting point for a theory of

the electronic properties of amorphous elemental
semiconductors, and in the subsequent sections the
model will be analyzed in detail.

The motivation for this study lies in recent ex-
perimental work'~® on amorphous Si and Ge. From
the outset it was evident that these substances were
highly disordered, and yet in many respects their
electronic properties are closely similar to those
of the corresponding crystals. In particular, a
band gap between valence and conduction bands
persists in the amorphous state. The extent to
which such a gap contains a small density of states
tailing off from the two bands is still a subject of
debate. Be that as it may, this remains a re-
markable experimental result.

A model for the structure of these elemental
amorphous semiconductors which has gained wide
acceptance is the random network model, in which
every atom is almost perfectly tetrahedrally co-
ordinated with its nearest neighbors. Distortions
of bond lengths and angles from the values in the
crystalline state are of the order of 10%, and yet
the distribution of second and further neighbors
is highly disordered.” It is by no means obvious
that such a geometrical arrangement can be con-
structed in practice. However, this appears to



